

$$\csc\theta = \frac{2\sqrt{2}}{3} = \sqrt{2}$$

$$\cos\theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{3}$$
 $\sec\theta = \frac{3\sqrt{2}}{2} = \sqrt{2}$

$$\sec \theta = \frac{2\sqrt{2}}{2} = \sqrt{2}$$

$$\tan \theta = \frac{2}{5} = 1$$

$$\tan \theta = \frac{2}{3} = 1 \qquad \cot \theta = \frac{1}{2} = 1$$

- 2) (2 points) What is the measurement of the angle θ from number 1? __45°
- 3) (1 point each) Fill in the blank:
- a) The sine function is Whoza? to cosine but Whatza? to cosecant.
- b) The cosine function is Whatche? to sine but Sayuhatans? to secant.
- c) The tangent function is House? and Whereja? to cotangent.
- 4) (6 points) For the right triangle below, find the missing angles by using only the numbers given. Do not find β from α or vice versa. Round answers to two decimal places:

$$\alpha = \cos^{-1}\frac{s}{12} = 65.38^{\circ}$$

5) (7 points) Standing right next to each other, two students hear Mike announce a test and begin to run away in different directions. The first student runs on a bearing of S35.5°E at a speed of 4.8 feet per second. The second student runs on a bearing of S54.5°W at a speed of 5.2 feet per second. After 10 seconds, how far apart are the students? Round answer to two decimal places.

$$51141.70 = \frac{3}{357} = 27 \times = 35771.41.70 = 2377.49ff$$
 $2 = \sqrt{357^2 - 237.49^2} = 266.55ff$
 $4011 = 23.82 = \frac{5}{246.55} = 355.05ff$
 $357 = 355.05ff$

7) (9 points) For the angle
$$\theta$$
 in Quadrant III where $\tan \theta = \frac{5}{8}$, find the 5 other trig functions.

$$\sin \theta = \frac{-5 \frac{169}{59}}{59} \qquad \csc \theta = \frac{-\frac{189}{5}}{5} \\
\cos \theta = -\frac{9 \frac{169}{5}}{59} \qquad \sec \theta = -\frac{199}{5} \\
\tan \theta = \frac{5}{5} \qquad \cot \theta = \frac{3}{5}$$

- 8) (3 points each) Convert as directed. Show all necessary work:
- a) 18.645° to DMS notation:
- b) 12° to radians:
- c) $\frac{13\pi}{12}$ to degrees:

$$\frac{13\pi}{12} \cdot \frac{180^{\circ}}{17} = 195^{\circ}$$

9) (7 points) A Ferris wheel pulled by bad, bad students that do not do their homework rotates at a rate of 8.75 revolutions per minute. The diameter of the Ferris wheel is 38.6 feet. Determine how fast a point on the tip of the Ferris wheel is traveling in miles per hour. Round to three decimal places.

10) (3 points) Short answer: Explain why the functions tangent, cotangent, secant, and cosecant have vertical asymptotes:

11) (1 point per box) Fill in the blank with the words "even" or "odd" to describe the type of function and then the correct value for the period:

	Type of Function	Period
Sine	pink	0
Cosine	rellow	C
Tangent	grange	於

Cosecant	
Secant	
Cotangent	

Type of Function	Period
green	ආ
blue	\Q
punple	Ω

12) (3 points each) Given the point $\left(\frac{5\pi}{3}, \frac{\sqrt{3}}{2}\right)$ on the graph of $y = f(\theta)$, find the **exact value** of the coordinates of the point under the transformation below:

a) $y = -4f(\theta)$

b)
$$y = f(\theta) + 2$$

c)
$$y = f(4\theta)$$

d)
$$y = f(\theta - \pi)$$

- b) $y = f(\theta) + 2$ c) $y = f(4\theta)$ d) $y = f(\theta \pi)$ $\left(\frac{5\pi}{3}, \frac{5\pi}{2}, \frac{5\pi}{2}\right)$
- 13) (10 points part a; 3 points each part b) For the function $y = 3\cos\left(\theta \frac{\pi}{4}\right) + 1$:
- a) Sketch a graph of the function below. Fill in the whole axis from $[-\pi, \pi]$:

- b) Determine the following:
- i) Domain

- ii) Range
- iii) Amplitude

iv) Phase Shift

4 right

v) Period

