

$$\sin\theta = \frac{2}{2\pi} = \frac{\pi}{2} \qquad \csc\theta = \frac{2\pi}{2} = \pi$$

$$\csc\theta = \frac{2\sqrt{5}}{2} = \sqrt{5}$$

$$\cos\theta = \frac{2}{L\hbar} = \frac{L}{2}$$
 $\sec\theta = \frac{2L}{L} = \sqrt{2}$

$$\sec\theta = \frac{2\sqrt{1}}{2} = \sqrt{2}$$

$$\tan \theta = \frac{2}{5} = 1$$

$$\tan \theta = \frac{2}{3} = 1 \qquad \cot \theta = \frac{2}{5} = 1$$

2) (2 points) What is the measurement of the angle & from number 1?

1) (8 points) For the right triangle below, find the six trigonometric functions for the angle α

- 3) (1 point each) Fill in the blank:
- a) The sine function is <u>red</u> to cosine but <u>blue</u> to cosecant.
- b) The cosine function is <u>yellow</u> to sine but <u>yello</u> to secant.
- c) The tangent function is porple and banana to cotangent.
- 4) (6 points) For the right triangle below, find the missing angles by using only the numbers given. Do not find β from α or vice versa. Round answers to two decimal places:

$$\alpha = \cos^{-1} \frac{5}{10} = 60^{\circ}$$

$$\beta = \sin^{-1} \frac{s}{10} = 30^{\circ}$$

5) (7 points) Standing right next to each other, two students hear Mike announce a test and begin to run away in different directions. The first student runs on a bearing of S35.5°E at a speed of 6.2 feet per second. The second student runs on a bearing of S54.5°W at a speed of 4.9 feet per second. After 12 seconds, how far apart are the students? Round answer to two decimal places.

Standing at the edge of a cliff and looking up 41.7°, you see a hot air balloon 357 feet booking down 23.8°, and directly below the hot air balloon, you see a lonely hot dog How far above the hot dog vendor is the hot air balloon?

Sin 41.7° =
$$\frac{x}{357}$$
 => $x = 357 \sin 41.7° \approx 237.49 ff$
 $x = \frac{x}{357^2 - 237.49} \approx 266.55 ff$

7) (9 points) For the angle
$$\theta$$
 in Quadrant θ where $\tan \theta = \frac{5}{8}$, find the 5 other trig functions:

$$\sin \theta = \frac{-\sqrt{89}}{\sqrt{9}} \qquad \csc \theta = \frac{\sqrt{89}}{\sqrt{9}}$$

$$\cos \theta = \frac{-\sqrt{99}}{\sqrt{9}} \qquad \sec \theta = \frac{\sqrt{99}}{\sqrt{9}}$$

$$\tan \theta = \mathbf{S}$$
 $\cot \theta = \mathbf{S}$

8) (3 points each) Convert as directed. Show all necessary work:

c)
$$\frac{11\pi}{12}$$
 to degrees:

$$.645^{\circ} \cdot \frac{60'}{1^{\circ}} = 3^{\circ}.7'$$

$$.7' \cdot \frac{60''}{1'} = 42''$$

$$18^{\circ} 38' 42''$$

9) (7 points) A Ferris wheel pulled by bad, bad students that do not do their homework rotates at a rate of 8.25 revolutions per minute. The diameter of the Ferris wheel is 36.8 feet. Determine how fast a point on the tip of the Ferris wheel is traveling in miles per hour. Round to three decimal places.

- 10) (3 points) Short answer: Explain why the functions tangent, cotangent, secant, and cosecant have vertical asymptotes: There's always nones in the banane ortand
- 11) (1 point per box) Fill in the blank with the words "even" or "odd" to describe the type of function and then the correct value for the period:

	Type of Function	Period
Sine	<u> </u>	
Cosine		()
Tangent		

Cosecant Secant Cotangent

Type of Function	Period
ß	,0 2 -2
///	4, 60°
	- Ag

- 12) (3 points each) Given the point $\left[-\frac{\pi}{3}, -\frac{\sqrt{3}}{2}\right]$ on the graph of $y = \sin \theta$, find the **exact value** of the coordinates of the point under the transformation below:
- a) $y = 4\sin\theta$
- b) $y = \sin \theta + 2$
- c) $y = \sin(4\theta)$

$$\left(-\frac{\pi}{3}, -2\sqrt{3}\right)$$

$$\left(-\frac{1}{12},-\frac{1}{2}\right)$$

- (-3,-25) (-3,-至元) (-12,-空) (三3,-空)
 - 13) (10 points part a; 3 points each part b) For the function $y = -3\cos\left(\theta \frac{\pi}{4}\right) + 1$:
 - a) Sketch a graph of the function below. Fill in the whole axis from $[-\pi, \pi]$:

- b) Determine the following:
- i) Domain

ii) Range

iii) Amplitude

iv) Phase Shift

v) Period

