MATH 1540 Spring 2017 Exam 3 Part 1

DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO

- Write your name below on the space provided.
- This test has a total of 3 pages.
- Work the problem in the space provided. If you need more space, write on the back of the test.
- To insure maximum credit, show your work. In general, full credit will not be given for unsupported answers.
- Look only at your test. Don't give me the impression that you are cheating.
- Draw a flower on this page to get something extra.
- Be sure to write neatly. If I cannot read what was written, do not expect the problem to be graded.
 A pencil must be used on all tests. Otherwise, the test will not be graded.
- If you finish early, go over the test again.

Number	Maximum	Score
1	6	
2	6/8	
3	4	
4	2	
5	3	
6	3	
7	4	
8	10	
Total	???	

Good luck!

Name _____

1) (6 points) Solve for the triangle. Be sure to show all necessary work:

- 2) (6 points) Math Airways drops calculators to students in need. A plane leaves the airport bearing $N27^{\circ}E$ towards Division Town. While flying over Division Town, the plane heads on a bearing of $N36^{\circ}W$. After some time, it is 300 miles due north of the airport. See picture:
- a) Find the total number of miles the plane flew to and from Division Town. Round only at the end:

- b) (2 points) Extra Credit: If the plane dropped one calculator every 5 feet, how many calculators were dropped on this trip?
- 3) (4 points) Silly Bill floats in the water 400 ft from a lifeguard. The lifeguard, turning 28° spots a shark 370 ft away. How far is the shark from Silly Billy?

- 4) (2 points) Concerning the given information of a triangle, how do you know when to use the Law of Sines versus the Law of Cosines?
- 5) (3 points) Find the trigonometric form of the complex number $5 + 5\sqrt{3}i$:

6) (3 points) Find the standard form of the complex number $\sqrt{2}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$

7) (4 points) For the complex numbers $z_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$ and $z_2 = 5 + 5\sqrt{3}i$, find $z_1 \times z_2$, using the trigonometric forms and the formula $z_1 \times z_2 = r_1 \times r_2 \left[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\right]$. Write final answer in standard form:

8) (4 points part a; 6 points part b) For the complex number -2i = 2(cos 270° + i sin 270°), find the following. For part a, use the formula (a+bi)ⁿ = rⁿ [cos(nθ) + i sin(nθ)]. For part b, use the formula (a+bi)^{1/n} = r^{1/n} [cos(^θ/_n + ^{360°}/_n · k) + i sin(^θ/_n + ^{360°}/_n · k)]. Write answers in standard form.
a) (-2i)⁶ b) The cube roots of -2i:

- 8) (3 points each) For the point $\left(4, \frac{3\pi}{2}\right)$, find a different representation of the point in polar form that satisfies the following conditions:
- a) r < 0 and $\theta > 0$ b) r > 0 and $\theta < 0$ c) r > 0 and $\theta > 0$

- 9) (4 points each) Convert as stated: a) $(\sqrt{2}, -\sqrt{2})$ to polar:
- b) $\left(9,\frac{11\pi}{6}\right)$ to rectangular:

10) (6 points) Sketch a graph of $r = 3\cos(2\theta) + 1$. Part of the graph has been done for you. Use the values from 270° to 360° to finish the graph. Round to one decimal.

11) (5 points) For the given vectors, determine algebraically if they are equivalent:

12) (8 points) Balthier, a Dalmascan sky pirate, flies his ship, the Strahl, from a Dalmascan port on a bearing of $S40^{\circ}E$ at a speed of 525 mph. A wind is blowing from due North at a speed of 32 mph. Find the ground speed and bearing of the ship in the wind. Draw a picture and use the Law of Cosines.

Final Fantasy XII: The Zodiac Age releases in July. I preordered 5 copies.

13) (3 points each) Let $\vec{u} = \langle 4, 6 \rangle$ and $\vec{v} = \langle 4, 19 \rangle$. Find and simplify: a) $4\vec{u} - \vec{v}$ b) $|4\vec{u} - \vec{v}|$ c) The unit vector in the same direction as $4\vec{u} - \vec{v}$:

d) $\vec{u} \cdot \vec{v}$: e) The angle between the vectors \vec{u} and \vec{v} . Round to two decimal places:

14) (4 points) Given the vector $\vec{u} = \langle 5, 2 \rangle$ and $\vec{v} = \langle 3, -1 \rangle$, draw and label the vectors $\vec{u}, \vec{v},$ $\vec{u} - 3\vec{v},$ and $2\vec{u} + 2\vec{v}$:

15) (8 points) An airplane travels on a bearing of $S25^{\circ}W$ with an airspeed of 330 mph. A wind is blowing from the **south** direction at a speed of 40 mph. Find the ground speed and direction of the plane using the formula $\vec{v} = |\vec{v}| (\cos \theta \vec{i} + \sin \theta \vec{j})$. Round only the final answer to two decimal places:

16) (5 points) A large, unattended child, pulls a wagon with a force of 15.5 lbs for 800 ft. The handle makes a 52° angle to the horizontal. How much work is done by the child in terms of foot-pounds?